VQEG Meeting Dec 18-21, 2023

National Differences in IQA

DIETMAR SAUPE, UNIVERSITY OF KONSTANZ, GERMANY – SIMON DEL PIN, NTNU, GJØVIK, NORWAY

Overview / Motivation: Statistical models in subjective IQA

- People rate image quality differently. Statistical models in P.913/BT.500 consider subject-specific features: - additive bias and variance (inconsistency).
- Cultural psychology found significant national differences in various areas.
- Our hypothesis: Similar differences exist in the perception of image quality.
- Investigation of statistical models with country-specific components for three datasets
 - KonlQ-10k, KADID-10k, NIVD (=Netflix International Video Dataset).
- National differences could be relevant for
 - design and analysis of crowdsourcing studies for IQA,
 - services to adaptively stream content worldwide.

Previous work

Previous work done on extracting cross-national differences in rating behavior. None of these presented a model for such differences.

- across screen sizes with crowdsourcing. QoMEX 2023.
 - large dataset (1860 videos, 14k subjects), well-balanced over 4 countries - biases across nations observed but not analyzed
- 640-651.
 - 1 set of stimuli, 4 countries, 10 datasets of AV quality (ACR)
 - preliminary finding: Datasets "appeared not to be influenced by language or culture".
- detected significant differences in perceived video quality between subjects from 4 nations

Bampis, C. G., Krasula, L., Li, Z., & Akhtar, O. Measuring and Predicting perceptions of video quality

Pinson, M. H., Janowski, et al (2012). The influence of subjects and environment on audiovisual

subjective tests: An international study. IEEE Journal of Selected Topics in Signal Processing, 6(6),

• Guntuku, S. C., Scott, M. J., Yang, H., Ghinea, G., & Lin, W. The CP-QAE-I: A video dataset for exploring the effect of personality and culture on perceived quality and affect in multimedia. QoMEX 2015.

In VQA dominance of direct single stimulus assessment ACR and VAS scales

- KADID-10k
- NIVD (converted from VAS)

Example: NIVD

Mean opinion scores (MOS):

MOS = Mean of all subject ratings for a stimulus

MOS with subject model (P.913)

Graphic scaling

On a continuous scale they are

- not equidistant like 1,2,3,4,5

Conclusions:

Country-specific models

thresholds to ACR/DCR categories:

Jones, B. L., & McManus, P. R. (1986). Graphic scaling of qualitative terms. SMPTE Journal, 95(11), 1166-1171 Watson, A. O. (2001). Assessing the quality of audio and video components in desktop multimedia conferencing. University of London.

Italy | US

Thurstonian model

- Global unique perceived image quality Q
- Random effect (Gaussian, equal variance) $Q \sim N(\mu_i, \sigma^2)$ with cdf F_{μ_i, σ^2}
- Country-specific ACR thresholds $\tau_1^k < \cdots < \tau_4^k$
- Global lapse rate $0 < \lambda < 0.2$ (new)
- Probability for ACR rating m = 1, ..., 5

Prob (ACR = m | image j, country k) =

$$(1-\lambda)(F_{\mu_j,\sigma^2}(\tau_m^k)-F_{\mu_j,\sigma^2}(\tau_{m-1}^k))+\lambda$$

To normalize the scale and anchor results

$$\tau_1^k = 1.5$$
 and $\tau_4^k = 4.5$

Binomial model

- Extreme response style: Some people prefer choosing the most extreme options on a rating scale.
- Rating = 2,3,4 -> extreme = 0 Rating = 1,5 -> extreme = 1
- Is there a significant difference between nationalities for IQA ratings?
- Generalized linear mixed effects model
 - Family: binomial Link function: logit Formula: extreme ~ -1 + country + (1 | image) $Prob(X_k = extreme \mid image j) = logit^{-1}(\alpha_k + U_j), \quad U_j \sim N(0,\sigma^2)$
 - Fixed effect per country, random effect per image

Clarke III (2000). Extreme response style in cross-cultural research: An empirical investigation. Journal of Social Behavior & Personality, 15, 137–152.

Computational methods

Thurstonian model

- Maximum likelihood estimation (MLE)
- Parameters $(\tau_m^k, \mu_j, \sigma, \lambda)$
- Nonlinear optimization:
 interior point method, Matlab: fmincon
- Confidence intervals:
 asymptotic Cramer-Rao bounds

Binomial model

- Bayesian or frequentist analysis possible:
 R: Ime4 library
 - Matlab: fitglme
- Parameters (α_k, σ)
- Confidence intervals:
 - Wald method
 - bootstrapping (same results)

International crowdsourced datasets

	Images Videos	Ratings	Subjects	Countries	4 - 3 -
KonlQ	10076	1,078,176 ACR	1261	75	2 - 1 -
KADID	11085	391,376 DCR	2212	72	0
NIVD	1860	538,200 VAS	10000	4	3

KonIQ-10K: Hosu, Lin, Sziranyi, & Saupe. KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment. IEEE TIP 29 (2020) 4041-4056. KADID-10k: Lin, Hosu, & Saupe. KADID-10k: A large-scale artificially distorted IQA database. QoMEX 2019. NIVD: Bampis, Krasula, Li & Akhtar, Measuring and predicting perceptions of video quality across screen sizes with crowdsourcing, QoMEX 2023.

2

0

10

5

Results KonlQ-10k — Thresholds

- Global lapse rate = 0.0051 + / 0.0003
- Thresholds and 95%-confidence intervals:

		India	Venezuela	Russia	Serbia	Others
tau_3	3.46	09+/-0.0021	3.3285+/-0.0041	3.3509+/-0.0053	3.3859+/-0.0062	3.3646+/-0.0022
tau_2	2.41	80+/-0.0027	2.4610+/-0.0050	2.4983+/-0.0067	2.4702+/-0.0078	2.4823+/-0.0027
sigma	0.48	08+/-0 <mark>.0015</mark>	0.5297+/-0.0028	0.4472+/-0.0036	0.4707+/-0.0042	0.4821+/-0.0015
				Poor	Fair	Good
O Se	ther erbia					
Ru Venez I	issia uela ndia					
	C) 0.5	1 1.5	2 2.5	5 3 3.	5 4 4.

• Findings:

The ACR interval for "Fair" is widest for India and smallest for Russia. The variance is largest for Venezuela and smallest for Russia.

Results KADID-10k — Thresholds

• Global lapse rate = 0.0078 + - 0.0008

Thresholds and 95%-confidence intervals:

	Venezuela	Egypt	India	Russia	Others
tau_3	3.3598+/-0.0046	3.2768+/-0.0161	3.4174+/- <mark>0.0204</mark>	3.4395+/-0.0243	3.4420+/-0.0082
tau_2	2.6363+/-0.0046	2.7420+/-0.0162	2.7677+/- <mark>0.0208</mark>	2.6634+/-0.0245	2.6921+/-0.0084
sigma	0.7997+/-0.0030	0.7651+/-0.0111	0.7609+/- <mark>0.013</mark> 7	0.7154+/-0.0150	0.7765+/-0.0054

Perceptible but

• Findings: The DCR interval for "Slightly Annoying" is smallest for Egypt. The variance is largest for Venezuela.

Results KADID-10k — extreme ratings

0.4

Rating

Extreme

ď

Probability o

0.0

Select countries and images:

- Each country has \geq 1000 ratings
- Each image has \geq 500 ratings
- Result: 7 countries, 67 images

Extreme Rating Probabilities Across Countries

Results NIVD — VAS

- Plain MOS scatterplots country vs. country
- No apparent country-specific differences

Plain MOS (Japan vs. US) NIVD paper QoMEX'23

Statistical analysis for ratings of each video

- Two-sample t-test
- Null hypothesis = ratings from two countries are from the same normal distributions (equal mean and variance)

NIVD — Conversion VAS -> ACR

- NIVD employed a SAMVIQ scale
- Result: Pseudo ACR
- We quantize VAS to ACR

Data tha	vicual	auglity	of	aach	toct	video
vale life	visuai	quanty	01	each	lesi	viueo

		Bad	Poor	Fair	Good	Excellen
Reference	Visual quality	0%	25%	50%	75%	100%
Test 1	Visual quality	0%	25%	50%	75%	100%
Test 2	Visual quality	0%	25%	50%	75%	100%
Test 3	Visual quality	0%	1 25%	50%	75%	100%
Test 4	Visual quality	0%	1 25%	50%	75%	100%

Results NIVD — Thresholds

• Global lapse rate 0.0471+/-0.0015

Thresholds and 95%-confidence intervals:

	Brazil	India	Japan	US
tau_3	3.4517+/-0.0062	3.4511+/-0.0065	3.4535+/-0.0062	3.4696+/-0.0061
tau_2	2.5439+/-0.0064	2.5417+/-0.0067	2.5387+/-0.0064	2.5532+/-0.0063
sigma	0.8709+/-0.0047	0.8768+/-0.0049	0.8683+/-0.0047	0.8713+/-0.0046

Findings: There are hardly any significant differences in the thresholds.

Limitations / Future work

- The normalization in the models was done by fixing the first and last thresholds to 1.5 and 4.5. - It is more informative to also let these be country-specific (normalize by z-scoring).
- The lapse rate was global.
 - Country-specific lapse rates may give better models.
- MLE for 10092 parameters for KonlQ-10k took 13h with Matlab on a MacBookPro. - A reduction of run-time may be achieved by lumping 10076 images into a single random effect.
- Subjective models to our country-specific analysis can be added.
- Binomial model regards influence by images as iid random effects. - Add a constant effect per image.
- NIVD public dataset is inconsistent with its QoMEX'23 paper: - many more subjects and ratings in paper,
 - country-specific differences shown in the paper are not in the dataset.

- A general analysis on the benefits of including lapse rates in Thurstonian models is outstanding.

Conclusions

- The hypothesis of significant differences in IQA rating behavior between countries is confirmed:
 - The thresholds of ACR/DCR categories on the latent perceptual scale differ between countries.
 - The likelihood for extreme ratings differ between countries.
 - A more detailed analysis should be carried out.
 - The open questions w.r.t. NIVD should be settled.
- 2. Future IQA datasets should take country-specific differences into account when
 selecting subjects from different countries,
 reconstructing IQA scale values from the responses.
- 3. Lapse rates have potential to improve Thurstonian models.

Acknowlegdments

- Vlad Hosu and Mirko Dulfer - Help regarding the curation of the raw KonlQ-10k dataset.
- Christos Bampis; Lukáš Krasula; Zhi Li; Omair Akhtar (Netflix) - Making the NIVD available.
- Shaolin Su
 - Reshaping the format of NIVD
- Michela Testolina
 - Slides background art made from JPEG AIC-3 image dataset.

